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In this report on examples of distribution functions with long tails we (a) show 
that the derivation of distributions with inverse power tails from a maximum 
entropy formalism would be a consequence only of an unconventional auxilliary 
condition that involves the specification of the average value of a complicated 
logarithmic function, (b) review several models that yield log-normal distribu- 
tions, (c) show that log normal distribulions may mimic 1/f  noise over a certain 
range, and (d) present an amplification model to show how log-normal personal 
income distributions are transformed into inverse power (Pareto) distributions in 
the high income range. 
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tribution; random walks. 

I N T R O D U C T I O N  

In the wor ld  of the inves t igat ion of complex  p h e n o m e n a  that  requires  
stat is t ical  mode l ing  and  in terpre ta t ion ,  several  compet ing  styles have  been  
emerging,  each with its own champions .  The  maximum entropy formalism 
people  have based  their  style on the ideas  in Bo l t zmann ' s  1877 p a p e r  that  
i n t roduced  the p robab i l i s t i c  in te rpre ta t ion  of the t h e r m o d y n a m i c  ent ropy.  
The  fractal people  are  enthusias t ic  a b o u t  systems and  processes  that  enjoy 
self-s imilar i ty  character is t ics  tha t  lead  to stat is t ical  d is t r ibut ions  with in- 
verse power  tails. Pare to  observed  an  inverse power  law in annua l  i ncome  
dis t r ibut ions  of the weal thy,  and  Paul  L~vy deve loped  formal  stat is t ical  
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models that yielded such tails. The renormalization group crowd have 
based theories of phase transitions and other complex phenomena on 
scaling ideas that they hope transcend details of individual models. In their 
enthusiasm some of the champions of each style hope to show that theirs is 
the path to the solution of various unsolved problems of today's science. 

The aim of this paper is to produce a few simple examples and 
limitations of several styles, and on the other hand to show how models 
may be constructed to allow one to pass from one style to another leaving a 
niche for each. 

1. M A X I M U M  E N T R O P Y  F O R M A L I S M  (] 4) 

In 1877 Boltzmann introduced the entropy function 
H=-fp(x)logp(x)dx with fp(x)dx= 1 (1) 

In the maximum entropy formalism one seeks the distribution function 
p(x) that maximizes the entropy subject to auxilary conditions [with Fl(x ) 

= c ]  = 1] 

(F,.(x)p(x) dx= c, with i =  1 . . . . .  l (2) 

By the method of Lagrange multipliers one introduces parameters ~t, 
. . . .  ~l to be chosen later so that variations in a functional of p(x), 

F ( p ) = - f p ( x ) I l o g p ( x ) + X ] + X 2 F 2 +  " "  + X~E,]& (3a) 

vanish as 

3F(p)=-f[logp(x)+l+Yt l + ? t 2 r  2+ . . .  +X, F t ] 6 p ( x ) d x = 0  (3b) 

that is, with 

p(x) = e x p l - ( 1  + )t] + ~kzF 2 + " ' "  + ~,F/) 1 (4) 

Now let us examine this process in an inverse manner. Suppose an 
interesting distribution p(x) is known. What auxiliary conditions are re- 
quired so that the chosen function maximizes the entropy for that distribu- 
tion? 

The simplest example is 

{/~e -~X with 0 4  x < o e  
p(x)= 0 for x < 0  (5) 

Then 

H -- - f0 ~ /xe -~ [ log /~  - / x x ]  dx (6) 

~l would be chosen to be - ( 1  + log/~), ~2 as ~, and the function F 2 = x. 
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Hence the decaying exponential maximizes the entropy function subject to 
the constraint, the mean value of x, i.e., x weighted by p(x) is fixed. 

The next more complicated case we might examine is the normal 
distribution 

p(x) = (2~o2) - ' / 2exp ( -  x2/Za2), - ~ < x < ~ (7) 

Then 

Here 1 + ?~l would be chosen to cancel the - �89 2 and the function F 2 
would be taken proportional to x 2. If p(x) is an exponential of a polyno- 
mial of degree l, then the auxiliary conditions might be selected to be l 
moment conditions 

f ? x J p ( x ) d x  =/~j, j = 1,2 . . . . .  l (9) 

The chosen examples (5) and (7) are basic in equilibrium statistical me- 
chanics.~ l,z) 

As a further example consider the entropy of the Cauchy distribution. 

p(x) = a/~v(x 2 + a2), - ~ < x < ~ (10a) 

Then 

The 1 + ~1 might be chosen to cancel the log(a /~)  but an a priori choice of 
F2(x ) as being proportional to log(x 2 + a 2) would be rather unlikely. One 
might argue that such a function could be derived from an infinite number 
of moment conditions. This would not be possible because the distribution 
has no convergent higher even moments. 

Any other distribution with long inverse power tail p ( x )~Ax -"  would 
suffer the same difficulty as the Cauehy distribution since for large x the 
auxiliary function F(x) would have to behave as v logx, a function that has 
not been considered a natural one for use in auxiliary conditions. The 
general situation is even worse since one of the most natural long-tailed 
inverse power distributions that is connected with some physical models is 
the L6vy distribution, which is generally defined only through its Fourier 
integral representation. 

2. LI~VY D I S T R I B U T I O N S  (5 9) 

L6vy distributions, as in the case of the normal distribution, made their 
first appearance in studies of distributions of sums in independent random 



212 Montroll and Shlesinger 

variables. Consider the sum of two independent random variables x~ and 
x 2, both with mean values zero: 

X=Xl+X 2, with - o 0 < x < ~  ( l l a )  

The characteristic function of X is defined to be 

f(k)=---(eikX)~v=f;;P,(x,)p2(x2)I {exp[i(xl * x2)k] } ]dx, dx2 

F = fl(k)fz(k), with fj(k) ------- pj(x)exp(ikx) dx (1 lb) 

The Fourier transform of the probability density p(x) of X is f(k) since 

( eikX)a,, = ~ p( x)eikX dx ( l lc )  

L6vy posed the question, What is the ,most general form of pj(x) with 
the property that if pl(x) and p2(x) have the same form, p(x) will also have 
that form. This is certainly the case for the normal distribution with 0 2 
being the dispersion for p1(x) and o22 for p2(x), since 

f (k)  = [ e x p ( -  k=02)][ e x p ( -  k20~) 1 = e x p [ -  k2(01 + 022)1 

L6vy chose the general form to be essentially 

fj(k) = exp(-ajlk[~), 0 < c~ < 2 (12) 

since 

f(k) = exp[ -[kl'~(al + a2) ] = exp(-[kl~a) with a = a I + a 2 

Then 

p(x) = 1 f ~  exp(-ikx)exp(-lk]'~a)dk (13) 

The Cauchy case corresponds to a = 1. The range of a does not exceed 
2 since it can be shown that the probability density p(x) for a > 2 will be 
negative for some x, contrary to the requirement that p(x) be everywhere 
nonnegative. The above discussion extends immediately to the sum of any 
number of random variables. The traditional central limit theorem that 
states that the sum of a number of independent random variables has a 
Gauss distribution is based upon the postulate that certain moments exist 
for each of the random variables. The L6vy distribution violates this 
requirement since no second moment exists. 

The asymptotic behavior of (13) for large Ix[ is easily shown to have 
the asymptotic form 

p(x)--(o~a/~rlxl"+~)r(oOsin�89 as I x l ~ ,  if 0 < ~ < 2  (14) 
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The normal distribution with a = 2 is singular with its exponential tail. In 
view of (14), p(x)  has no integer moments of order 2 or greater. Long-tailed 
distributions are very different from those with Gaussian or exponential 
tails. Consider a man of average height (the distribution heights of adults of 
either sex are essentially Gaussian). No one twice the average height exists. 
On the other hand, consider a man of average annual income (the income 
distribution has a long tail). It is easy for him to find another with twice his 
income; his wealthier discovery could easily find another with twice his 
income, etc. If p(x)  represents the jump length distribution in a random 
walk, a long tail implies the existence of occasional long jumps that take the 
walker far away from clusters of points that have already been visited, thus 
starting new clusters. If the second moment of p(x) is infinite (with the first 
being zero in a symmetric walk), then no scale exists to measure a "typical" 
jump length. Jumps of all sizes will occur forming a self-similar set of 
clusters of sites visited. Long tails may imply self-similar scaling. A Lrvy 
flight is a random walk, in the continuum, with jump lengths governed by a 
p(x)  with a Lbvy distribution. For a walker beginning at the origin, the 
probability for being at site x at time t is given by (3) with a replaced by t 
on the right-hand side. The self-similar clustering nature of a Lrvy flight is 
more apparent when the walk is restricted to a lattice. ~1~ 

Consider, in two dimensions, a random walk on a square lattice with 
the symmetric single jump probability density 

n _ l  ~ P0)- 05) 

where n and b are integers greater than unity. This p(l) allows for jumps of 
all orders of magnitude, but with each succeeding order of magnitude 
displacement occurring with an order of magnitude less probability. This 
random walker makes about n jumps of a unit length forming a cluster of 
sites visited before a jump of length b occurs and the trajectory leaves the 
initial cluster. Then about n such clusters of sites are visited, each of about 
size n, and separated from a neighboring cluster by a distance b are formed, 
before a jump of length b 2 occurs, etc. Of course, in a particular simulation 
a wide degree of fluctuation is possible so jumps of length b 4 may precede 
jumps of length b 2, etc. For a modest number of steps, the set of points 
visited by the random walker will be clustered. The condition which ensures 
that this self-similar clustering persists and that Gaussian behavior is 
avoided as the number of jumps tends to infinity, is (as with the Lrvy 
flights), that the mean-squared displacement per jump ~5 must be infinite. 
Then one expects that the set of sites visited should have the fractal 
dimension ~9) a where 

a = lnn / lnb  (16) 
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because on the average there will be n subclusters per cluster, with each 
subcluster scaled down by a length b relative to the cluster. 

The quantity l 2 is given by 

) 5 =  ~ i!1~0(1)_ n -  1 ~ (b2/rt)j (17) 
1 n j=o 

and it is infinite when b 2 > n. The structure function f(k) of the random 
walk is given by the Fourier transform of p(I), which is 

n - 1  ~ n-J[cos(bJkx)+cos(bJky)] (18) f ( k ) -  2n 
j=o 

For b 2 > n, either of the series with kx or ky is the celebrated example of 
Weierstrass' function which is continuous but nowhere differentiable. The 
Weierstrass function is self-similar in that it looks oscillatory on every 
length scale thus is not differentiable (i.e., there are no well-defined tan- 
gents to the curve). A Taylor series expansion of f(k) will fail because the 

coefficient of k 2 or k 2 is related to l 2 which is infinite. Instead, it can be 
shown using Mellin transforms that 

n - 1  
f (k)  = 1 + �89 + �89 Q(ky) + 2-n 

where 

n - 1  Q ( k ) -  
j ~  --oo 

and q = - l n n / l n b  + 2~rij'/lnb. 

(19) 

The fractal dimension a appears naturally and is equal to ln n/lnb. 
When ~5 is infinite, then a is less than 2. The function Q(kx) is oscillatory, 
periodic in Ink x with period lnb, i.e., Q(kx) -- Q(bkx). It can be shown that 
in the continuum limit a L6vy flight of dimension a is recovered. (~~ 

The self-similarity of the random walk is reflected in the following 
scaling equation, which is derived directly from Eq. (18): 

n - 1 (cos kx + cos ky). (20) f (k)  = n-  lf(bk) + 

The same argument can be put into a temporal context. (t~ If p (x)  
represents a distribution of waiting times between a sequence of events, 
some events might occur after short intervals, but occasionally with small 
probability long pauses (intermittances) would exist that would be followed 
by a burst. A record of such events then becomes an alternation of bursts 
and intermittancies. When the mean time between bursts becomes infinite, 
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no characteristic time exists and a self-similar set of bursts will occur. Then, 
the time between events is governed by a probability density p ( x )  with an 
inverse power tail similar to (14) with 0 < a < 1. 

It is difficult to imagine that anyone in an a p r i o r i  manner would 
introduce a set of auxiliary conditions that could yield the logarithmic term 
that appears in the entropy function associated with the L6vy distribution: 

H = -  p(x) log e d k  d x  (21) 
OO 

Hence the wonderful world of clusters and intermittancies and bursts that 
is associated with L6vy distributions would be hidden from us if we 
depended on a maximum entropy formalism that employed simple tradi- 
tional auxiliary conditions. 

3. THE LOG-NORMAL DISTRIBUTION <~]-14> 

The log-normal distribution has the distinction of having both a long 
tail and moments, being essentially at the edge of this possibility, with most 
distributions with longer tails having no moments. 

The introduction of the log-normal distribution into statistics was 
motivated by an observation by Francis Galton (ll) that certain classes of 
events are better classified through geometric means than through arith- 
metic means. Galton followed Quitelat's program of introducing the normal 
distribution into social science and statistics of human measure and behav- 
ior. Galton was an imaginative 19th century English eccentric (12) who 
inherited a small fortune, traveled extensively, wrote travel guides, and 
became one of the founding fathers of the once popular "science" of 
eugenics (now considered racist by some). He established the Eugenics 
Institute at University College in London. Karl Pearson was appointed its 
first Galton professor. Following Galton, D. McAlister (13) in 1879 intro- 
duced the log-normal distribution in a paper entitled The Law of the 
Geometric Mean. A definitive review of the log-normal distribution is given 
by Atchison and Brown. (~4) We were first introduced to the Galton and 
McAlister papers by this reference. Let us now review some mechanisms 
that lead to the log-normal distribution. 

First consider a complex task whose successful completion requires the 
successful completion of n independent subtasks. The probability, P, of 
success for the primary task in a unit time is (pj being the probability of 
success of the j th  subtask) 

P = P l P 2 P 3  " " " P,, (22a) 

so that 

log P = log P l + log P2 + log P3 + " " " + log p.  (22b) 
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Since the Pi are independent random variables so are the log Pi. If the 
appropriate moments exist for log Pi and n is "large," then the central limit 
theorem is applicable and log P has a Gauss distribution. This argument 
was first given by W. Shockley (15) to interpret the observation that the 
productivity of scientists publishing research papers has a log-normal 
distribution. Shockley's data were taken from publication records of scien- 
tists at the Brookhaven National Laboratories. In that case the pj ' s  were 
probabilities of attributes necessary for the publication of a paper; Pl being 
the probability of having an idea for investigation, P2 that of having the 
competence to pursue the investigation, 1o 3 that of obtaining some interest- 
ing results, etc. 

Events that lead to log-normal distributions are analogous to circuits 
that are described by an "and" logic (series networks). For a signal to pass 
through the circuit all the "and" gates must be open. Events that lead to a 
Gauss distribution are the analogs of an "or"  logic (or parallel networks). 
Pulses may proceed through any open gates, the total current being the sum 
of the current through each gate (the central limit theorem being related to 
the sum of independent variables). 

Log-normal distributions have been observed in many diverse fields 
such as income distributions, body weights, sound measurements (in deci- 
bels), rainfall, etc. Modern scaling theories have led to a log-normal 
distribution of electrical resistance in materials with random scatterers 
which cause the localization of electrons. (16-19) 

An older example is the size distribution of crushed ore; Kol- 
mogorov ~2~ "deduced" the crushed ore distribution by a mechanism first 
proposed by the Dutch astronomer Kapteyn. Suppose that a random 
variable initially has a value X 0 and that through a succession of breaks 
achieves the values X i ,  X 2 ,  X 3 . . . .  , X N where the difference X n - X n _  | is a 
random portion of X n_ ] so that 

x .  - X . _ l  = R.xo_  

with R n being a random variable that ranges between - 1  and 0 (since 
X n - 1  > Xn)" Then 

N N 

Z, ( x .  - x . _  , ) / x . _ |  = R. 
n = l  n = l  

If we change the sum to an integral letting d x  = ( X  n - X n _  |), then 

X N d x / x  logX N - logX 0 = R |  + �9 �9 �9 + R N 
0 

When the individual R, distributions have appropriate moments an appli- 
cation of the central limit theorem implies that l o g ( X N / X o )  has a normal 
distribution, or the size distribution, X N / X  o, is log normal. Notice that the 
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Shockley model is recovered by writing 

N 
xN= II (1 + R.)x0 

n=l 

and identifying Shockley's p ,  with (1 + R,) and his P with Xu/X o. 

4. FROM THE LOG-NORMAL TO THE l / f  DISTRIBUTION ~2I) 

Another commonly observed distribution is the 1/f distribution. If the 
range of f is to be 0 < f < ~ ,  then it must be part of some other 
distribution since the normalization integral 

s ~df/f 

diverges in the large and small f regime. We now show that over some 
range of the appropriate variable the log normal distribution mimics a 1 / f  
distribution. 

If log x has a normal distribution then the variable x has the following 
distribution: 

) = ox {- l>o } 
(2~O2) 1/2 

(2~o2)1/2 x/~ 
(23a) 

Generally, a l / f  distribution is demonstrated graphically on log-log 
graph paper by plotting log g as a function of logx. For this purpose, we 
write 

log[ g(x/.~)] = - l o g ( x / i f )  - {[log(x/Y~)]2/2o 2} - �89 2) (23b) 

the last term being a constant. Let us measure the variable x in multiples f 
of its mean value ~, with x = fff. Then Eq. (23b) becomes 

log[ g(f)l = - l o g  f -  �89 [(logf)/o] 2- �89 2) (24) 

If the distribution g ( f )  is to be 1/f ,  then only the linear term in log g(f) 
and the constant term should remain in Eq. (24), as would be the case as 
o ~ ~ .  Let a be large but finite and let f be expressed as a power n of e: 
f = exp n. Then 

log[ g ( f ) ]  = - n - �89 ( / / / 0 )  2 -  �89 2) (25) 
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When o is large, we can estimate the largest integer value of n that allows 
Eq. (25) to be regarded as linear in n to within a prescribed precision 
(always omitting the constant term in the precision estimation). If the 
middle term on the right-hand side of Eq. (25) is to be less than a fraction 0 
of the first term, then 

�89 OIn I or Inl < 20o 2 (26) 

Suppose that 0 = 0.1 and o = 5. Then, for any ]n I < 5, g ( f )  mimics a l / f  
distribution to within 10%. This corresponds to 11-integer n values or, from 
Eq. (26), 11 e-folds, which is equivalent to four orders of magnitude. 
Generally, the function g(f) mimics a 1If distribution for (40o2+ 1) 
e-folds to within a relative error 0. Clearly, the larger o, the more orders of 
magnitude the mimicking persists. 

Now consider a task whose successful conclusion follows the comple- 
tion of N subtasks. Then, the sum similar to (22b) is composed of N terms. 
The sum of the squares, o 2, of the component random variables, o 2 should 
be the order of N with o ~ = N82 where 

N 
~2= 1 

~] of (27) 
j = l  

The greater N the greater the number of e-folds or decades over which the 
distribution function for primary task ("grand task") successes mimics a 
1/f distribution. 

5. ON INCOME DISTRIBUTIONS 

It is commonly observed that over a large range of an independent 
variable, distributions might be of a standard type such as normal or 
log-normal but then suffer a transition in the last few percentiles of a 
population into an inverse power law. This transition is analyzed here 
through a special example, the U.S. annual income distribution. That 
distribution is plotted in Fig. 1 for the period 1935-1936 on log-normal 
graph paper. (22) On such graph paper a cumulative log normal distribution 
would be a straight line. That is the case for the first 98-99 percentile; 
however, afterwards a transition to a Pareto inverse power distribution 
occurs. One of t he  earliest observers of the log-normal distribution of 
incomes was R. Gibret. (23) More recent critical examination of the fitting of 
the log-normal distribution to data is given in Refs. 24 and 25. Badger (22) 
has given a useful summary of the application of various statistical distribu- 
tion functions to income data. 

We now indicate how the log-normal distribution might be interpreted 
in terms of a maximum entropy strategy.. Then we suggest a model to 
"describe" the transition to the Pareto form. 
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Fig. 1. Distribution of families and single individuals by income level, 1935/1936. Data are 
from Ref. 35. Most of the data follow a log-normal distribution, while the last 1% is governed 
by a Pareto tail. 

Through various transactions, money is transferred from individual to 
individual in a manner  analogous to the transfer of energy from gas 
molecule to gas molecule through collisions. By transfer of goods or 
services (or welfare or charity), every family has someone with an annual 
income. One might argue that the many  transactions cause money to 
become randomly distributed but, through various constraints due to 
training, motivation, risk-taking, inheritance, luck, intimidation, skill, etc., 
some people obtain larger annual incomes than others. We will still apply 
the entropy principle, but at first without any clear understanding of the 
constraints. Then we introduce our backward method of choosing the 
constraint that implies the observed distribution. 

Let us suppose that the distribution of annual incomes is log normal, 
as indicated in Fig. 1. Then the probability that one's annual income lies 
between x and x + dx is 

(2~ro2)- V2exp( - l o g [ x / ~ ] 2 / 2 o  2) a x / x  = p ( x ) a x  (28) 

The factor d x / x  is exactly the variation of the Bernoulli utility function 
U(x) defined so that (26) 

dU = dx / x ( 2 9 )  
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The classical significance to this form is that a process involving a transfer 
of money dx has a different meaning to persons of different levels of 
income. Transactions made by persons of different income levels might be 
more equivalent if they involved the same fraction of the income of the 
participants. Hence, according to Daniel Bernoulli, the basic function 
which determines one's course of action is the utility function 

= log(x/ ) (30) 

Notice that with U considered to be the basic function of our process 
the normal distribution of U would follow from the maximization of an 
entropy function (27) 

= - f e ( V ) l o g p ( V ) d v  (31) 

under the auxiliary condition p ( U )  being normalized and 

( u  2) = f u S ( u )  dU= const (32) 

That the integral of U 2 is essentially constant over a long time interval is 
apparent from the data in Table I. We may write 

f U>(U)dU= f [log(x/~)12p[log(x/2)](~/x)d(x/~) (33) 

From the table the fraction of the national family income in a given 
population quintile remained almost constant over the period of 18 years of 
the selected data. The mean income shifted, generally going to a higher 
level, but relative to the mean the distribution in a given interval remained 
invariant. Hence in the transition from one year to another incomes would 
have suffered an annual inflation factor (or deflation factor a) so that 

x~ax and ~ a ~  and x/Y~--->ax/a~=x/.Y 
but yet (33) would have remained invariant. This is a consequence of there 
being no basic scale in the process. 

Table I. Percent Distribution of Family Personal Income by Quintiles and 
Top 5% of Consumer Units for Selected Years (22) 

Quinfiles 1944 1947 1950 1951 1954 1956 1959 1962 

Lowest 4.9 5.0 4.8 5.0 4.8 4.8 4.6 4.6 
Second 10.9 11.0 10.9 11.3 11.1 11.3 10.9 10.9 
Third 16.2 16.0 16.1 16.5 16.4 16.3 16.3 16.3 
Fourth 22.2 22.0 22.1 22.3 22.5 22.3 22.6 22.7 
Highest 45.8 46.0 46.1 44.9 45.2 45.3 45.6 45.5 

Total 100 100 100 100 100 100 100 100 
Top 5% 20.7 20.9 21.4 20.7 20.3 20.3 20.3 19.6 
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The above analysis is very attractive; however, it gives us no insight 
into the appearance of the Pareto inverse power tail beyond the 99 
percentile in Fig. 1. No one would dispute the fact that the wealthy differ 
from the lower 99% in the manner that they accumulate income. While 
most people are paid by the hour, the wealthy frequently accumulate their 
extra wealth by some amplification process; that process varying from case 
to case. At the height of the Beatles' popularity any new recording by them 
was purchased by millions of fans. The leverage people in the investment 
business have their style of amplification. During certain periods of pros- 
perity easy money becomes available for investment, sometimes in stock, 
sometimes in real estate or perhaps in silver or Rembrandts. A common 
characteristic of such time is that the daring may exploit the easy money to 
acquire some speculative commodity through a small margin payment, say, 
10% with a promise to pay the remainder later. If the commodity doubles in 
price a 10% margin payment is amplified into a ninefold profit. J. P. 
Morgan was given his first million by his father. He invested a considerable 
fraction of that in the manner described above, reinvesting the profit, etc., 
to become much richer than he would have, had he accepted the offer of a 
privatdozentship in mathematics at G6ttingen University offered to him by 
Felix Klein. Perhaps one of the most common lower level modes of 
amplification is for an individual to organize an operation with others 
working for him so that his income is amplified through the efforts of 
others (a modest-sized business, for example). 

We now introduce a model to indicate how Pareto-L6vy tails may be 
derived from a log-normal distribution (or indeed from any one of a broad 
class of distributions with second moments) by accounting for the process 
of amplification, by the amplification of amplifications, etc. (21) Let g(x/.~) 
denote the basic distribution written in terms of the dimensionless quantity 
x/.~, .~ being the mean value of the observed x if the tail of the distribution 
is neglected. With a small probability, ~, suppose that in the new amplifier 
class one has the same distribution function g that is natural for the process 
but that ~ is amplified to Nff. Then the basic quantity g(x/.~)dx/Y~ is 
converted to g(x/NY~)dx/NY, In the second stage of amplification, which 
we postulate to occur with a probability X2, the mean value ff becomes N2~. 
The new distribution G(y) (with y =-- x/2) that allows for the possibility of 
continuing levels of amplification is 

)2 g(  y 
G ( y ) =  ( 1 - ~ ) [  g(y)+ ~h N g ( ~ ) +  ~ 5  ~ 5 )  + ' ' "  ] (34) 

where ~, is a parameter that determines the range of the initial distribution 
g(y). The factor 

= (1  - a )  
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is introduced to ensure the proper normalization of G(y). It is easy to see 
that by replacing y by y / N  in (34) that 

G(y) = -~ G(y/  U) + (1 -2 , )  g (y)  (35) 

The determination of the complete solution of our inhomogeneous 
scaling formula (35) is rather complex but it is easy to obtain our desired 
asymptotic properties of G(y). First suppose X--->0. Then there is no 
amplifier class in the population and G(y) becomes the same as g(y). If X 
is small, say, 0.01, and N is about 10, then G(y) is still close to g(y) since 
the first term in (35) may be neglected. However, when y becomes large 
g(y)-->O. Let us suppose this decay is faster than that of G(y). Then the 
asymptotic form of G(y) is determined by the simpler scaling formula 

G(y) = (X/N)G(y/N)  

If we suppose that G(y) = Ay -1-~, then direct substitution yields 

/~ = [ l og (1 /X) I / l og  N (36) 

Thus the Pareto exponent appears as a fractal dimension. The evaluation of 
A requires a more subtle analysis since in general it may be periodic in logX 
with period log N. 

The best value of / ,  to fit the tail of the 1935-1936 data was found by 
Badger to be 1.63. If we put the probability of being in the special amplifier 
class as X = 0.01 the average amplification factor N would be about 16.8. 
This number is not surprising since one of the most common modes of 
significant income amplification is to organize a modest-sized business with 
the order of 15-20 employees. 

6. ON l / f  NOISE 

The noise spectrum of a "purely random" process is one associated 
with an autocorrelation function of the form c(t,r)= e- t / '= c(t/'r), r 
being the "relaxation time" of the process. The power spectrum of such a 
random process is, at frequency f, 

S(f, r) = 4 Res176176 r)e 2,ift dt (37a) 

= 4 R e s 1 7 6 1 7 6  t/re2~rift dt 

= 4 r / J 1  + (2~rfr) 2] (37b) 
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A commonly observed noise spectrum has t / f  behavior over a broad 
frequency range. To proceed from (37a) to such a spectrum it is presumed 
that in a complex system there is not a single "r but rather a distribution (or 
ensemble) of relaxation times 0(T) with normalization 

f0~p(~-) dl -= 1 (38) 

Then the power spectrum becomes 

4rp(~') d,r 

The structure of the distribution function 00-) depends upon the 
character of the noisy dynamical system of interest. Here we shall postulate 
it to be determined by a process characterized by Eq. (22a). We assume 
that the events determining the 0(~-) may be described as the successful 
completion of "grand processes" whose progress is the consequence of the 
successful completion of a number of independent subprocesses. If we 
interpret the P of Eq. (22a) as the probability per unit time that a "grand 
success" occurs, then ~-= I/P is the time required for a single grand 
success. The distribution function of ~', weighting the many ways that a 
success might be achieved is obtained by rewriting (22a) as 

N 

log'r = log(1 / P ) = ~ log(1/p,) (40) 
i = 1  

Since each Pi is a random variable, so is Jog 1/pi. Then, if N becomes large 
and appropriate moments exist, the central limit theorem implies that log r 
has a normal distribution or ~- a log-normal one. We let ~ be the mean value 
of z. In a system or network whose noise is generated by charge carrier 
mobility, the sequence defining the p~ might be a successful succession of 
the surmountings of a sequence of energy barriers by the carrier. 

Our log-normal distribution has the form 

(2~ro,),/, ~./~ (41) 

Then the power spectrum becomes 

4 ( r / ? ) exp( - [ log (~ - / ? )  ]2/2o2) d(,r /?) 
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with ~ being the dimensionless frequency 

o~ = 2~rf~ (43)  

Then, defining z to be z = r/~, 

e x p [ -  (logz)2/2o 2 ] dz 
S(r163 (2---~a--~),/2---~ 17 w 2z---~ i (44) 

Most of our analysis is made after introducing the transformation 

y = logz (45) 

Then 

/~,~ exp [ - (y2 /2o  2) + y] dy 
S(oa, o)/4rc 

exp(- yz/2oZ) dy 
_ 1 f_~o (~~ - (46)  

 0(2 o2) ' /2  oey + ' 

Several asymptotic results are immediately apparent. We note from 
(46) that in the large o limit ( o ~  m)S(~o,o) mimics 1/~o = 1/f~ noise: 

S(oa, r)~(2~ro2)-l/2s dz _ 1 7r 
1 + ~02Z 2 2WO- ( 2" ) I/2 (47) 

Most of the remainder of this section will be devoted to finding, for a given 
o, the range of frequencies for which S(~o,o) mimics a 1/~ spectrum. 
However before proceeding to this main theme we record two other 
asymptotic results: 

(a) as oo--> 0, (46) becomes 

y2 

__ exp(�89 [ 1 2] -- exp( 1 f- oo exp - ~(-Ya - ~ )  d( Y)a = -~a 2) (48) 

(b) as w--) oo, (46) becomes 

S(w,o)/4~--w-2(2~roz)-'/2s (y2/202) + y] dy 

= t0-=exP(�89 =) (49) 
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The systematic expansion of S(~o, o) is obtained from (46) by noting 
that 

_l=IoaeY[1--(oaeY)2+(~ey)4''' ] 
[~0e y + (o~eY) -1 ] [(~oey)-,[ 1 - (~0eY) -2 + (~0eY) - 4 . - .  ] 

if o~e y < 1 

if we y > 1 

(50) 

Since at ~oe y = 1, y = log(1/~o), 

(2vro 2) ~/2S(o~, o)/4~ 

= ~- '~- l~  {1 - (o~eY) 2 + (~0eY) n . . .  }e-y2/2~ 
�9 - "  - -  o o  

+r (O)ey)-l{1--(coeY)-2+(~ey)-4. . .  }e-f/2'~2dy (51) 

The integration in terms of the error function is carried out in the Appen- 
dix. When (A10) is substituted into (46) it is found that 

S(~o, ~-)/4~ = ~ ~- - ~- 

X { [1 -- 1(~0)2'Jr 5(~'~'0)4"{" " " " ] 

5774/1ogw)4[24 ~ 2o 2 [ )2 [ , ] - -  1 -  61 77 277 77 4 

+ ' ' ' }  

If [o-llog~ol < 20 the powers of (log~) may be neglected from the 
terms in the brackets and S(~o, ~-) has a log-normal distribution analogous to 
O(x/~) in (41). Then we may proceed in the same manner as we did in the 
discussion of Eqs. (23)-(26) to determine the number of decades of to = f~ 
the noise spectrum seems to have a 1/~0 character. Again in our process 
characterized by (22a), o 2 becomes proportional to n, the number of 
hurdles that must be surmounted on the road to a '"grand success." 

Similarly, Nelkin and Harrison (28) have shown that a regime of 1If  
noise results in the specific context of charges moving, under the influence 
of an electric field, in a material containing traps with a log-normal 
distribution of release rates. 
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Van der Ziel (29) as early as 1950 in his work on noise in semiconduc- 
tors appreciated the importance of the 1/z  factor in P(~-) to cancel the ~- in 
(39) thus leading to S( f )  being proportional to 1If. He proposed an 
activated hopping process, where 

(i) .r ec exp( E / k T) (activated hopping) 
(ii) p(~') = T- l for '/'min < 'r < l"ma x 

This implied that the distribution of activation energies f (E)  is uniform 
over the range (emin,Emax) because d~/~- = d E / k T  = f (E)dE.  This model 
was neglected ~3~ because a peaked (at the order of an eV) rather than a 
constant f ( E )  is expected. However, Dutta and Horn ~30 have shown that a 
1 / f  ~ spectrum (with a near 1) results from a peaked f (E)  if the width of 
this distribution is broad compared to kT. The price one pays is that a now 
becomes specifically temperature dependent. This has been experimentally 
verified for silver films (31). Similar temperature behavior, but with system- 
atic quantitative deviations from the Dut ta-Horn activated energy model, 
has been found for silicon-on-sapphire wafers. O2) 

Machlup O4) stressed that the scale invariant p(,)d~ = d,r/r which 
leads to 1 / f  noise is a reflection that nature " . . .  is sufficiently chaotic to 
posses s . . ,  a large ensemble of mechanisms with no prejudice about 
scale . . . .  " In this view the semiconductor noise is just a particular 
example of the basic message that nature is scale invariant. The log-normal 
distribution has the required scale-invariant characteristic. We have listed 
several models that lead to the log-normal distribution. Machlup in the 
1950s while at the Bell Laboratories was assigned the 1 / f  noise problem by 
Shockley. We have used Shockley's 1957 model of scientific productivity 
(as applied more generally to multiplicative random processes) to derive the 
scale-invariant distribution of relaxation times sought by Machlup. 

A broad variety of systems that display 1 / f  noise is discussed in 
Ref. 33. 

This research was partially supported by the Advanced Research 
Project Agency of the U.S. Department of Defense. 

APPENDIX: ON THE EVALUATION OF THE POWER SPECTRUM 

In (46) for the power spectrum we encounter the integral 

e x p ( - y 2 / 2 o  2) 
I(~o, o) = f~_ ~, ~e y + ( ~~ dy 
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We first note that 

_l=ItoeY[l-(toey)2+(toey)4"'" ] 
[toe y + ( t o e Y )  - 1 ]  [ ( t o e y ) - l [ l _ ( t o e y ) - 2 + ( t o e y ) - 4 . . .  ], 

Since at toes = 1, y = log(I/to) 
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if ~oe* < 1 

if toe* > 1 

(a.1) 

'(to, o) = (2~176 {1-  (~e') 2 + (toeY) 4 . . -  }exp(-y2/2o2)dy 

oO --1 + s  (toey) {1--(toey)-2+(toeY) 04 ' ' '  } 
log( 1 / oa) 

• exp[ - (y2/2o2)]  dy (A.2) 

Then, if we replace y by - y  in the first integral 
- -  o o  - - Y  

/(w, o) -- gg~oWe {1--(toe-Y)2+(we-Y) 4"'" }exp[-(y2/2o2)]dy 

+ ( (toe-*) (1 - (toe') -2 + (toe*) - 4 . . .  ) 
�9 ,'log( 1/w) 

• exp[ - (y2 /2o2) ]dy  (A.3) 

A typical integral on the right-hand side of this equation has the form 

~-2 s  + 1)y]exp(-y2/2o2)dy 

= (2o2)'/2exP(�89 + 1)2Erfc[a + (2n + 1)o2]/(2o2) '/2 

Hence 

~--~-I(to, o) = (2o2) 1/2 ~ (--1)%a2"+lexP(�89 + 1) 2 
2 n=O 

• Erfc[logto + (2n + 1)O2]/(202)1/2 

+ (2~ 1/2 k (-- 1)"to-2"-lexP(�89176 2n + 1) 2 
n = 0  

• Erfc[log(1/to) + (2n + 1)O2]/(202) 1/2 (a.4) 

For either large or small o the argument of the Erfc function is large hence 



228 Montroll and Shleslnger 

we may use the asymptotic formula of Laplace 

# Erfcx 1 ( 1  1 + 3 3 . 5  + . . . )  (A.5) 
- T  e- 2 - -  x 2x 3 4x 5 8x 7 

We first find the contribution of the factor � 89  2) to the terms in 
(A.4). Then we calculate influence of the factor in the parentheses of (A.5) 
to (A.4). Since 

�89 - [ log~ + (2n + 1)o212/2o 2 

= 1 {exp[--(logw)2/2o2]}exp{--log~02n+l }exp -- �89 + l) 2 

(A.6) 

I(oa, or) = �89 - (log u~)2/2a 2 ] n~__ 0 ( -  1)" (c,(~o) + c,(1/oa)} 

where 

(202) 1/2 (202) 3/2 
Cn(O ) = 

logoa + (2n + 1)o 2 2[loga~ + (2n + 1)o2] 3 

3(202) 5/2 

4"Ilog~o + (2n + 1)o2] 5 

When o is large the first term in c,(~0) may be expanded as 

( log oa log2w 
o ( 2 n  + 1) l 1 (2n + 1)o 2 + (2n + 1)2~ 4 

(A.7) 

l~176 + l~176 . . .  1 
(2n + 1)306 (2n 4- 1)408 J 

Since c , ( 1 / w )  has the same form except with logw 

(A.8) 

E 2 = - l ,  E 4 = 5, E 6 = - 61, E 8 = 1385, Eto = - 50521, . . . 

(a.9b) 

with E l being the Euler numbers 

log(1/~o) = -log~0 the odd powers of log~o cancel each other from cn(0: ) 
and cn(l/~0). Since 

~-~ ( -  1) n _ ~ra'+1[E2,1 
(A.9a) 

n=O/' ( 2 n +  1) 2t+' 22t+2(21)! 

replaced by 
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and  

( - 1 ) "  _ ~ (a .9c)  
n=0 2 n + l  4 

the summat ions  over the reciprocals of powers of the odd integers are easily 
per formed in (A.6) using the expansions of the various terms in (A.7) 
(following the scheme of (A.8)). We finally obtain 

+7  
4 

5 ~ 4 ( l o g w )  [ 1 _ ~ _ 0 1 ( . ~ O ) 2 +  2 7 7 (  ~ ) 4 . . ,  ] + 
2o--7- 

+...  } (A.10) 
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